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Abstract. A novel multi-scale seamless model of brittle-crack propagation is proposed and
applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic
dimensions. The model represents the crack propagation at the macroscopic scale as the drift-
diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip
coordinates in the position space, and reflects the oscillations observed in the crack velocity
following its critical value. The model couples the crack dynamics at the macroscales and
nanoscales via an intermediate mesoscale continuum. The finite-element method is employed
to make the transition from the macroscale to the nanoscale by computing the continuum-based
displacements of the atoms at the boundary of an atomic lattice embedded within the plate and
surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward,
producing the tip critical velocity and its diffusion constant. These are then used in the Ito
stochastic calculus to make the reverse transition from the nanoscale back to the macroscale.
The MD-level modelling is based on the use of a many-body potential. The model successfully
reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well
as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.

1. Introduction

The emergence of an observable fracture on a macroscopic scale is a consequence of crack
propagation across several widely different length scales. Traditionally, the continuum-based
theories of fracture mechanics [1] have provided the basic computational and modelling
tools for studying the fracture processes. These theories provide a variety of energy [2]
and force [3, 4] criteria for computing the conditions for further growth of a static crack
on the verge of extension. Despite their valuable contributions, a modelling of a fracture
process based exclusively on these theories is not, however, capable of accounting for all
of the experimentallyobserved characteristics of the crack dynamics or the crack-surface
topography. For example, while these theories assume smooth, so-calledmirror-like,
crack surfaces and predict a limiting crack velocity equal to the Rayleigh wave velocity
of the material(VR) [1], recent experimental [5–8] as well as modelling studies [9, 10]
clearly suggest that crack surfaces that were originally mirror-like undergo appreciable
mirror-to-mist-to-hackleroughening transitions, and that crack velocities reach a maximum
value of 0.6 VR. Furthermore, these studies reveal that adynamic instabilitycontrols the
crack velocity when it exceeds a value of 0.36 VR, beyond which the crack dynamics
changes dramatically, i.e. the mean crack acceleration drops andviolent oscillationsin the
velocity set in. These oscillations lead to the bifurcation of the crack trajectories and the
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subsequent emergence of the roughening transitions of the crack surfaces. All of these
phenomena remain unexplained within the continuum-based modelling, although there have
been attempts [11–13] to provide an insight into the origins of these oscillatory motions.
However, these investigations have predicted the onset of these oscillations to be at a
velocity of 0.6 VR, which corresponds to the well-known Yoffe instability [14] and does
not explain the value of 0.36 VR.

Crack behaviour is ultimately determined by the atomic-scale processes occurring within
a highly localized andultra-fine volume of the material. This volume forms the nanoscopic
fracture process zone(FPZ) that surrounds the crack tip. It would, therefore, be reasonable
to assume that amulti-scalemodelling approach that couples the crack propagation across
several length and energy scales, e.g. from the centimetre scale down to the nanometre
scale, within one unified andseamlessmodel would be able to provide deeper insights into
the peculiarities of the crack dynamics. In such a model we should be able, in principle, to
directly connect the nano-mechanics of the FPZ (for example the sequence of bond ruptures)
with the displacement- and stress-field equations of the continuum-based theories and see
how macroscopic stresses, applied over macroscopic sample sizes, couple with the local
atomistic forces to drive the crack tip forward.

Over the past few years a number of hybrid quasi-continuum approaches to crack
propagation have been pursued [15–18] in order to derive a failure criterion from models
in which an atomistic core is embedded within a continuum domain. In these models,
the energetics of the core is studied via molecular dynamics (MD) simulation, while
the continuum is modelled by the finite-element method (FEM). These studies have not,
however, been concerned with a multi-scale modelling, although they do constitute the
initial attempts in this direction.

We recently performed [19] MD simulations of brittle and ductile fractures in two-
dimensional (2-D) triangular lattices of elemental Ag and Ag–Au alloy, using many-body
interatomic potentials [20, 21]. In these simulations [19] we correctly predicted the onset of
dynamic instability at 0.32VR and obtained the associated roughening of the crack surfaces
and branching in the Ag. Moreover, the brittle-to-ductile transition in the Ag–Au alloy at
elevated temperatures was also obtained. In these simulations [19], we identified the crack
tip as the most-stressed atom in the lattice by computing the stress-tensor field over the
atomic sites.

In this paper we have substantially extended the above work [19] and have developed
a novel multi-scale model of the brittle-crack propagation. In this model, the crack
propagation at the macroscopic scale, in real space, is fully parametrized in terms of
the crack-tip data aloneobtained from the nanoscale computations. This is achieved by
introducing an intermediate mesoscale continuum to bridge the macroscales and nanoscales.
The model is based on a hybrid atomistic-continuum strategy in which the FPZ is represented
by a nano-sized atomic lattice located within a continuum with macroscopic dimensions.
The novel aspect of the model consists in the way it represents the crack propagation
over the macroscopic scale by the drift-diffusion motion of the crack-tip atom alone in the
position space. In the model, in addition to thedrift motion of the crack tip, adiffusive
motion is also introduced so as to accommodate the effect of the crack-velocity oscillations,
at the atomic level, on the cracktrajectory (path) at the macroscopic level. The diffusive
motion is parametrized by a diffusion constant and a stochastic Wiener process. It will,
therefore, generate the roughening transitions at the continuum level.It should, however, be
emphasized that this drift-diffusion motion is not analogous to the usual, thermally driven,
diffusion in, for example, a liquid, and should not be interpreted in the same way. In a liquid,
a particle diffuses throughthe system, and at every stage of the process it is the sameparticle
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that undergoes the diffusive motion, and as the temperature rises the particle diffuses more
quickly. Then by considering a set of these particles and averaging over their diffusions, a
diffusion constant is obtained. In our model, however, we do not view the crack-tip diffusion
within this standard framework. Here, the diffusion does not refer to the motion of the same
predefinedatom representing the crack tip and moving through the system. Rather, it refers
to the stochastic motion of the crack tip, in position space, where the tip is identified with
a different most-stressed atom at each stage of the propagation. Furthermore, since we
associate the diffusive motion with the crack-tip space coordinates, and not with its velocity,
then a rise in the temperature, for example, will only make the crack trajectory more irregular
and will not create artificial acceleration or deceleration of the crack. In other words, we
represent the sequence of bond rupture events, that characterizes the time evolution of the
crack tip in space, by a stochastic drift-diffusion process.

A picture of crack propagation in terms of the motion of the crack-tip atom alone was
also recently reported [22], in an MD simulation only, within a non-linear model where the
bond-breaking events were separated in time and followed a type ofzigzag ‘ice-skating’
sequence, referred to as the Einstein ice-skater model.

In our proposed multi-scale model, the crack propagation involves transitions across
three different length and energy scales. These are from the macroscale to the nanoscale,
via an intermediate mesoscale continuum, and back to the macroscale again. First, there
is the transition from the macroscale to the nanoscale. This essentially involves the
computation of the displacements of the FPZ boundary atoms when the macroscopic sample
is remotely subjected to applied stresses at its boundaries. From these displacements, the
MD-level boundary forces, and hence the MD-level boundary stresses, to drive the crack
tip forward within the FPZ are obtained. The calculation of these displacements, as will be
discussed, entails the introduction of an intermediate-scale continuum. Next, the nanoscale
computations are performed within the FPZ. These will generate the critical crack velocity
and the diffusion constant of the crack-tip atom as the bonds break sequentially at the crack
tip. Finally, the reverse transition from the nanoscale to the macroscale is concerned with
advancing the crack tip to a new position. This is performed by employing the critical crack
velocity and diffusion constant in the Ito stochastic differential equation [23] to obtain the
crack trajectory.

The following flow chart (figure 1) summarizes the main tasks performed at each of
these transitions. We have applied this proposed model to the brittle fracture of a 2-D Ag
plate with macroscopic dimensions. The model has a generic structure and can be applied
to other metallic and non-metallic elements. Furthermore, as we have indicated at the
conclusion of this paper, it can be extended to a 3-D modelling of the fracture phenomena.

2. The transition from the macroscale to the nanoscale

We considered an Ag plate with dimensions of 1 cm along theX-axis and 2 cm along the
Y -axis containing an edge crack 0.1 cm in length. In the simulations, the plate was subjected
to constant strain rates in theY -direction. The crack tip was surrounded by a 2-D triangular
atomic lattice, representing the FPZ, that was located within an MD cell, and the cell was
embedded within the plate. To drive the crack tip forward at the atomic level, we required the
forces acting on the boundary atoms of the FPZ. These boundary forces could, in principle,
be computed once the displacements of the boundary atoms were known. The FEM can be
used to obtain these displacements. However, the straightforward application of the FEM to
a multi-length-scale problem such as this entails a severe computational difficulty. This is
because the accuracy of an FEM calculation depends crucially on the spatial resolution of its
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Figure 1. A flow chart summarizing the main tasks.

elements. In our case, this implied that the calculation of displacements at the boundary of
the FPZ would have required decomposing the macroscopic plate into elements whose sizes
were comparable to the lattice constant of the triangular Ag. This would have made the
computation cost prohibitive. To circumvent this problem, we introduced an intermediate
mesoscale plate linking the FPZ to the surrounding continuum. The mesoscale continuum
had far more refined element sizes than the macroscopic plate, and in the vicinity of the
crack tip these sizes werecomparable to the lattice parameter.

We first employed the FEM, via the software package ANSYS [24], to calculate the
stress intensity factor (SIF) for mode I opening(KI ) over the macroscopic plate. In this
calculation, we used coarse element sizes. The relation between the SIF and stress load [25]:

KI = σ(πa)1/2
(

1.12− 0.23
a

W
+ 10.6

a2

W 2
− 21.7

a3

W 3
+ 30.4

a4

W 4

)
(1)

was then used to obtain the stress load(σ ) at the boundary of the mesoscale plate surrounding
the FPZ. This plate had dimensions of 4000d × 1000d, i.e. 1156 nm× 289 nm, containing
always a crack of the fixed length 100d; d = 2.89Å is the Ag triangular-lattice parameter. In
equation (1),a andW respectively refer to the crack length and the mesoscale plate’s width.
The underlying assumption in using this equation was that the crack tip was experiencing
the same SIF as was produced over the macroscopic plate.

The stress load at the boundary of the mesoscale plate was then used in a second FEM
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computation to provide the atomic displacements. Our previous MD simulation [19] had
shown that to drive the tip forward, we needed a critical stress load ofσc = 136.8 pN/atom.

3. Nanoscale computations within the FPZ

With the computation of the boundary forces, the MD-level simulations were performed
to drive the crack tip within the FPZ and obtain the its critical velocity, i.e., the velocity
beyond which the dynamic instabilities set in and oscillations are produced, and its diffusion
parameter. The lattice chosen consisted of 4970 atoms arranged in 71 rows with 70 atoms per
row. The lattice sizes were 20.23 nm×17.77 nm, and the MD time-step was1t = 0.01 ps.
The initial temperature was set at 0 K, but was allowed to evolve freely as the crack
propagated. A potential cut-off of 2.25d was employed.

The energetics and dynamics of the atoms were obtained from the Sutton–Chen (S–
C) potential [20]. The potential parameters are given in [20], but the parameterc in this
potential had to be recalculated for the 2-D lattice, and was obtained asc = 107.7. The
velocity Verlet algorithm [26] was used to integrate the equations of motion.

The S–C potential describes the van der Waals attraction at the long range and combines
it with the cohesive interactions at the short range. This potential and its generalization [21]
for the fcc binary alloys have been shown to model the mechanical and thermal properties
of a range of fcc elemental metals and their alloys quite successfully, and have formed the
basis of a series of MD simulations in the past [27, 28].

The crack tip in the MD simulation was identified with the most-stressed atom in the
FPZ, and this atom was marked by computing the stresses at atomic sites according to [19,
29] for the S–C potential.

The diffusion constant of the crack-tip atom, at each stage of the propagation, was
obtained from the Einstein general model of Brownian dynamics [30]

D0 = 1

2Nst

〈 N∑
i=1

|ri(t)− ri(0)|2
〉

(2)

where the〈 〉 refers to the averaging over time, the summation refers to the total number
of diffusing atoms in the system,s is the dimensionality of the diffusion space;s = 2 in
the present case, andt is the time. In our simulation, we needed the diffusive motion of a
single crack-tip atom only. Hence equation (2) reduced to

D0 = 1

2ts

∑
t

|r(t)− r(0)|2 (3)

where〈 〉 is replaced by summation over the (delay) time.
In addition to the diffusion parameter, we needed to calculate the critical velocity.

The details of this computation are given elsewhere [19], and the result obtained was
Vm = 605.74 m s−1 = 0.32VR. A similar result was also obtained experimentally [5–7] for
another material, where it was observed that when an edge crack in polymethylmethacrylate
(PMMA) plate started to propagate, the initial speed increased rapidly to about 0.34VR and
this was then followed by erratic oscillations. A further similar result was also obtained
in a large-scale MD simulation [9] using the Lennard-Jones potential. The similarity of all
of these results, including ours, obtained for widely different materials, indicates that the
value of about 0.32 VR seems to be a universal critical velocity beyond which the erratic
oscillations appear in the crack-velocity profile of the material. We used this value of the
Vm in the Ito calculus to advance the crack tip to a new position.
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4. The reverse transition to the macroscale

The computation of the critical velocity and the diffusion constant allows the transition from
the nanoscale back to the macroscale to occur and hence predicting the macroscopic crack
trajectory. This aspect consisted of advancing the crack tip to a new location. Once the tip
had advanced to this position, the simulation cycle could be repeated with a new FPZ.

The advancement of the crack tip was based on the Ito stochastic differential equation
(see [23])

dX(t) = A[X(t), t ] dt +D1/2
0 dW(t). (4)

This equation describes the stochasticpath, X(t), of the crack tip, at elevated space and
time coordinates, and resembles the position Langevin equation [26]. The termA[X(t), t ]
is a dynamical variable of the crack tip and is referred to as thedrift velocity. D0 is, as
before, the diffusion constant andW(t) is a given Gaussian stochastic process, called a
Wiener process, with the mean and variance given by

〈dW(t)〉 = 0

〈dWi(t) dWj(t)〉 = δij dt.
(5)

Equation (4) predicts the increment in position, i.e. dX(t) = X(t + dt)−X(t), for a small
elevated time interval dt as a combination of two distinct parts, a smooth (deterministic) part
represented byA[X(t), t ] dt , and a stochastic (random) part represented byD1/2

0 dW(t)
and superimposed on the drift part. If we specialize the overall crack-tip motion to an
Ornstein–Uhlenbeck-type process [23], then we can identifyA[X(t), t ] with the constant
velocity Vm.

Equation (4) is a stochastic differential equation in position space, and asso-
ciates a stochastic behaviour with the crack-tip space coordinates (trajectory) and
not with its velocity. Since the diffusion coefficient appears with the stochastic component
of the trajectory equation, then if the temperature of the system were to increase and hence
induce a corresponding increase in the value ofD0 (if D0 were temperature dependent),
this would only affect the contribution of the second term in equation (4). It is evident that
this would just make the crack trajectory moreirregular , i.e. one having a more compli-
cated zigzag pattern, and wouldnot affect the overall crack drift velocity which is set at
the constant critical value ofVm. It should be noted that the rate of crack acceleration is
determined by the applied strain. However, as we have shown in our previous simulation
[19], different applied strain rates lead to thesamevalue ofVm at which the oscillations
begin. Furthermore, we should emphasize that equation (4) isnot concerned with the drift-
diffusion motion of apredefinedatom through the plate, such as is the case in, for example,
the diffusion of an interstitial atom through a material. Rather, we could, very schemati-
cally, liken the crack-tip diffusion in our case to the diffusion of a vacancy through a plate
where the vacancy jumps from one location to the next whendifferent atoms recombine
with it at different places. It is themovementof the crack tip, rather than the movement a
fixed atom representing the crack tip, that follows equation (4).

To realize equation (4) in our 2-D simulation, we used the following iterative scheme:

X(t + dt) = X(t)+ Vm dt +D1/2
0 [dt ]1/2G(t)

Y (t + dt) = Y (t)+D1/2
0 [dt ]1/2G(t)

(6)

whereG(t) is a standard normal random variable generated according to the procedure
given in [26]. The simulation time-step for this part was set at dt = 0.01 µs.
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Figure 2. The FEM-based domain decomposition in the macroscopic 1 cm× 2 cm Ag plate
containing an initial edge crack of length 0.1 cm along theX-axis: (a) the initial state at the
start of the simulation; (b) the state after the crack has propagated for 4.5 µs.

Figure 3. The FEM-based domain decomposition in half of the mesoscale plate surrounding
the MD cell. The size of the plate is 1.156 µm× 0.289 µm. The MD cell is located in the
region with dense elements whose sizes are comparable with the lattice constant.

5. Results and discussion

Figure 2(a) shows a snapshot of the initial state of the macroscopic Ag plate, containing
the initial inserted crack, at the start of the simulation. Figure 2(b) shows the final state
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Figure 4. The MD-generated snapshots of the cracked triangular lattice showing (a) the mirror-
like initial surfaces; (b) the surfaces after crack bifurcation leading to roughening transitions.
The initial temperature was set at 0 K.

of the Ag plate after the crack has propagated forward for 450 dt , i.e. after 4.5 µs.
The FEM domain decomposition elements are clearly visible in these figures. Figure 3
shows the domain decomposition, over half of the mesoscale plate, with refined elements.
The elements near the crack tip, i.e. the dense area with square-shaped elements, have
sizes comparable with the triangular-lattice constant. The MD cell is located within this
dense region. The computation of the displacements of the FPZ boundary atoms required
element sizes of this order of magnitude. Figure 3 is included to show the intermediate
mesoscale continuum that was introduced to bridge between the macroscale and nanoscale
FEM calculations. Figure 4 shows two snapshots of the brittle-crack growth in the FPZ. In
figure 4(a) the cracked triangular lattice with mirror-like surfaces is shown at the start of
the MD simulation, and figure 4(b) shows the state of the lattice at the end of a typical MD
simulation where the mirror-like surfaces have clearly undergone roughening transitions.
The low simulation temperature did not allow for the appearance of a plastic zone and a
brittle-to-ductile transition. Figures 2 to 4 clearly indicate the three different length and
energy scales addressed in our simulation.

Starting from the initial coordinates of the crack tip in theX–Y plane atX = −0.4 cm
and Y = 1 cm, three multi-scale simulations were performed for three different constant
strain rates of 3.1× 10−5, 3.41× 10−5, 3.565× 10−5 applied to the Ag plate boundaries
in theY -direction. In each case the first value of the SIF was calculated and this was then
used to obtain the first value of the diffusion constant via the mesoscale and nanoscale
computations. The magnitude of the delay time in equation (3) over which the value of the
diffusion constant was calculated differed according to the position of the crack tip along
its trajectory. Each diffusion constant calculation was performed for a diffusion up to a
crack-branching event at the nanoscale. Once the diffusion constant was obtained, the crack
tip was moved to a newX–Y position by computing equations (6) for 150 dt , i.e. for 1.5µs,
and then the whole cycle was repeated.

Figure 5(a) shows the variations ofKI , in steps of 150 dt , corresponding to each new
set ofX–Y coordinates of the crack tip. It is evident from this figure that as the strain rate
increased, the values ofKI increased correspondingly, as was to be expected. Moreover, we
can see that in all three cases theKI -values, following their systematic increases, reached
maximum values. This was when the crack had advanced to about the midway position in
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Figure 5. The variations of (a) the stress intensity factor (SIF) at different positions (times)
along the crack trajectory in the macroscopic plate for three different strain rates:�: 3.1×10−5;
+: 3.41× 10−5; �: 3.5× 10−5; and (b) the same for the diffusion constant.

its trajectory. We attribute this behaviour to the finite size of the Ag plate. In a larger plate,
theKI -curves would have continued to increase and the maxima would have been attained
at values different to those given here.

Figure 5(b) displays the variations inD0 corresponding to the variations inKI . It is
interesting to observe that for the higher values of the strain rate, the crack tip diffuses
almost uniformly after reaching the half-way position. This implies that a limiting crack
diffusion constant, for our sample size, has been reached. This is analogous to the limiting
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Figure 6. The macroscopic stochastic trajectories of the crack tip for three different strain rates:
(a) 3.1×10−5; (b) 3.41×10−5; (c) 3.565×10−5, shown on a submicron segment of theY -axis.
(d) shows the combination of (a), (b) and (c) on a micron segment of theY -axis.

crack velocity.
Figure 6 shows the stochasticX–Y trajectory of the crack tip, in real space, computed

according to equations (6) for three different strain rates. In each of the first three plots in
this figure, i.e. (a), (b) and (c), asubmicronsegment of theY -dimension of the trajectory
is depicted so as to reveal fully the details of the stochastic trajectory on this scale. It can
clearly be observed from these three plots that the profiles of thedrift motion of the crack
tip are very similar for each case. However, the random component of the trajectory has
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Figure 6. (Continued)

tended to subside with the increasing applied strain. This was in line with the findings
shown in figure 5(b) concerning the behaviour of the diffusion constant. In figure 6(d) we
have combined the trajectories plotted in (a), (b) and (c), and have given theY -dimension
on a micron scale. We can see that, on this scale, the crack trajectories are less hackled
and the random fluctuations are to some extent smoothed out. Furthermore, we can identify
a micron-size region within which the trajectories are bunched together forming a kind of
crack band. This suggests to us that a cleavage crack propagates on a macroscopic scale
within a band-like region, i.e. the crack may not have a hair-like feature.
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6. Conclusions

In this paper we have provided a generic multi-scale modelling of brittle-crack propagation
and applied it to the fracture growth in a 2-D Ag plate with macroscopic dimensions.
The model is based on a hybrid strategy and couples the fracture process across three
different length and energy scales in which the FEM-based computations of the stress and
displacement fields of the continuum mechanics are integrated with the local nanoscale
atomistic dynamics. The transition from the macroscale to the nanoscale was achieved via
the introduction of an intermediate mesoscale continuum-based calculation of the stress and
displacement fields. The nanoscale computations then provided the critical crack velocity
and the diffusion parameter of the crack tip. The reverse transition to the macroscale was
modelled via the macroscopic Ito calculus in the position space in which the diffusion
controls the coordinates of the crack tip. The model has correctly predicted the critical
crack velocity and the onset of the roughening transitions of the surfaces associated with
the crack-velocity instability. Moreover, due to the multi-scale nature of the model, we
have additionally been able to trace the macroscopic crack trajectory in real space in terms
of the data generated by the movement of the atomically sharp crack tip. Our nanoscale
computations were based on the use of a many-body interatomic potential, and we have
found that this potential was reasonably stable, well-behaved, computationally efficient and
capable of producing MD results consistent with other MD simulations of the fracture
phenomenon.

The model reported here can be further generalized by extending its application to the
3-D simulation of brittle-fracture phenomena. In such an extension, the crack tip will be in
the form of acrack front composed of a line of atoms. This line can be identified as the
set of most-stressed atoms each belonging to a different crystalline plane of the 3-D FPZ.
Instead of a single critical velocity and diffusion constant, we then have a set of these values,
and a set of Ito equations can then be solved to provide the crack trajectory which now
takes the form of a 2-D surface. The 3-D modelling will significantly improve our current
description of the fracture behaviour, since a 3-D model will allow for the appearance of
plastic deformation, emission of dislocation loops near the crack front [31] and how they
affect the further movement of the front, mechanical grooving and the emergence of other
topological defects. Above all, it will allow for a realistic comparison to be made with the
experimental fracture data on the crack surface topography and fracture toughness. This
work is now in progress and will be reported in forthcoming publications.
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